Featured image of post LeetCode第89场双周赛总结

LeetCode第89场双周赛总结

---/3984

没打

【枚举】有效时间的数目

题目

给你一个长度为 5 的字符串 time ,表示一个电子时钟当前的时间,格式为 "hh:mm"最早 可能的时间是 "00:00"最晚 可能的时间是 "23:59"

在字符串 time 中,被字符 ? 替换掉的数位是 未知的 ,被替换的数字可能是 09 中的任何一个。

请你返回一个整数 answer ,将每一个 ? 都用 09 中一个数字替换后,可以得到的有效时间的数目。

示例 1:

1
2
3
输入:time = "?5:00"
输出:2
解释:我们可以将 ? 替换成 0 或 1 ,得到 "05:00" 或者 "15:00" 。注意我们不能替换成 2 ,因为时间 "25:00" 是无效时间。所以我们有两个选择。

示例 2:

1
2
3
输入:time = "0?:0?"
输出:100
解释:两个 ? 都可以被 0 到 9 之间的任意数字替换,所以我们总共有 100 种选择。

示例 3:

1
2
3
输入:time = "??:??"
输出:1440
解释:小时总共有 24 种选择,分钟总共有 60 种选择。所以总共有 24 * 60 = 1440 种选择。

提示:

  • time 是一个长度为 5 的有效字符串,格式为 "hh:mm"
  • "00" <= hh <= "23"
  • "00" <= mm <= "59"
  • 字符串中有的数位是 '?' ,需要用 09 之间的数字替换。

解题思路

枚举即可

代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class Solution {
public:
    int trans(string time){
        int res = 0;
        res += time[4]-'0';
        if(time[3]>'5') return -1;
        res += (time[3]-'0')*10;
        int hour = 10*(time[0]-'0')+(time[1]-'0');
        if(time[0]>'2') return -1;
        if(time[0]=='2' && time[1]>'3') return -1;
        res += hour*60;
        return res;
    }
    int countTime(string time) {
        vector<int> a(5,0);
        for(int i=0;i<5;i++){
            if(time[i]=='?') a[i] = 1;
        }
        int res = 0;
        function<void(int,string)> dfs = [&](int pos,string ctime)->void{
            if(pos==5){
                // cout<<ctime<<' '<<trans(ctime)<<endl;
                if(trans(ctime)>-1 && trans(ctime)<=1440) res++;
                return;
            }
            if(a[pos]){
                for(int d=0;d<10;d++){
                    ctime[pos] = char(d+'0');
                    dfs(pos+1, ctime);
                }
            }else dfs(pos+1,ctime);
            return;
        };
        dfs(0,time);
        return res;
    }
};

【快速幂】二的幂数组中查询范围内的乘积

题目

给你一个正整数 n ,你需要找到一个下标从 0 开始的数组 powers ,它包含 最少 数目的 2 的幂,且它们的和为 npowers 数组是 非递减 顺序的。根据前面描述,构造 powers 数组的方法是唯一的。

同时给你一个下标从 0 开始的二维整数数组 queries ,其中 queries[i] = [lefti, righti] ,其中 queries[i] 表示请你求出满足 lefti <= j <= righti 的所有 powers[j] 的乘积。

请你返回一个数组 answers ,长度与 queries 的长度相同,其中 answers[i]是第 i 个查询的答案。由于查询的结果可能非常大,请你将每个 answers[i] 都对 109 + 7 取余

示例 1:

1
2
3
4
5
6
7
8
输入:n = 15, queries = [[0,1],[2,2],[0,3]]
输出:[2,4,64]
解释:
对于 n = 15 ,得到 powers = [1,2,4,8] 。没法得到元素数目更少的数组。
第 1 个查询的答案:powers[0] * powers[1] = 1 * 2 = 2 。
第 2 个查询的答案:powers[2] = 4 。
第 3 个查询的答案:powers[0] * powers[1] * powers[2] * powers[3] = 1 * 2 * 4 * 8 = 64 。
每个答案对 109 + 7 得到的结果都相同,所以返回 [2,4,64] 。

示例 2:

1
2
3
4
5
输入:n = 2, queries = [[0,0]]
输出:[2]
解释:
对于 n = 2, powers = [2] 。
唯一一个查询的答案是 powers[0] = 2 。答案对 109 + 7 取余后结果相同,所以返回 [2] 。

提示:

  • 1 <= n <= 10^9
  • 1 <= queries.length <= 10^5
  • 0 <= starti <= endi < powers.length

解题思路

预处理出2的幂的指数的前缀和 再利用快速幂即可

代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#define ll long long
class Solution {
public:
    ll quickpower(ll x,ll y,int mod){//x^y % mod
        ll res = 1;
        while(y>0){
            if(y&1) res = (res*x)%mod;
            x = (x*x)%mod;
            y>>=1;
        }
        return res;
    }
    vector<int> productQueries(int n, vector<vector<int>>& queries) {
        vector<int> powers;
        for(int i=0;i<32;i++){
            if((n>>i)&1) powers.push_back(i);
        }
        // for(auto &x: powers) cout<<x<<' ';
        int m = powers.size();
        vector<int> sum(m+1,0),res;
        for(int i=1;i<=m;i++) sum[i] = sum[i-1]+powers[i-1];
        for(auto &vec: queries){
            int cnt = sum[vec[1]+1]-sum[vec[0]];
            res.push_back(quickpower(2,cnt,1e9+7));
        }
        return res;
    }
};

【二分】最小化数组中的最大值

题目

给你一个下标从 0 开始的数组 nums ,它含有 n 个非负整数。

每一步操作中,你需要:

  • 选择一个满足 1 <= i < n 的整数 i ,且 nums[i] > 0
  • nums[i] 减 1 。
  • nums[i - 1] 加 1 。

你可以对数组执行 任意 次上述操作,请你返回可以得到的 nums 数组中 最大值 最小 为多少。

示例 1:

1
2
3
4
5
6
7
8
9
输入:nums = [3,7,1,6]
输出:5
解释:
一串最优操作是:
1. 选择 i = 1 ,nums 变为 [4,6,1,6] 。
2. 选择 i = 3 ,nums 变为 [4,6,2,5] 。
3. 选择 i = 1 ,nums 变为 [5,5,2,5] 。
nums 中最大值为 5 。无法得到比 5 更小的最大值。
所以我们返回 5 。

示例 2:

1
2
3
4
输入:nums = [10,1]
输出:10
解释:
最优解是不改动 nums ,10 是最大值,所以返回 10 。

提示:

  • n == nums.length
  • 2 <= n <= 10^5
  • 0 <= nums[i] <= 10^9

解题思路

最小化最大值 想到二分,即二分这个最大值res

res的可从[0, maxv]二分搜索

在O(n)时间内判断最大值为res时是否合法

每次操作是将后一个元素减1,加到前一个元素上

代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#include<bits/stdc++.h>
using namespace std;
#define ll long long
class Solution {
public:
    int minimizeArrayValue(vector<int>& nums) {
        int n = nums.size();

        function<bool(int)> isok = [&](int k)->bool{
            ll rst = 0;
            for(int i=n-1;i>=1;i--){
                if(rst + nums[i] > k)  rst = rst + nums[i] - k;
                else rst = 0;
            }
            if(nums[0]+rst>k) return false;
            else return true;
        };

        int l = 0, r = *max_element(nums.begin(),nums.end());
        while(l<r){
            int mid=(l+r)>>1;
            if(isok(mid)) r = mid;
            else l=mid+1;
        }
        return r;

    }
};

【枚举+dfs树上统计】创建价值相同的连通块

题目

有一棵 n 个节点的无向树,节点编号为 0n - 1

给你一个长度为 n 下标从 0 开始的整数数组 nums ,其中 nums[i] 表示第 i 个节点的值。同时给你一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示节点 aibi 之间有一条边。

你可以 删除 一些边,将这棵树分成几个连通块。一个连通块的 价值 定义为这个连通块中 所有 节点 i 对应的 nums[i] 之和。

你需要删除一些边,删除后得到的各个连通块的价值都相等。请返回你可以删除的边数 最多 为多少。

示例 1:

1
2
3
输入:nums = [6,2,2,2,6], edges = [[0,1],[1,2],[1,3],[3,4]] 
输出:2 
解释:上图展示了我们可以删除边 [0,1] 和 [3,4] 。得到的连通块为 [0] ,[1,2,3] 和 [4] 。每个连通块的价值都为 6 。可以证明没有别的更好的删除方案存在了,所以答案为 2 。

示例 2:

1
2
3
输入:nums = [2], edges = []
输出:0
解释:没有任何边可以删除。

提示:

  • 1 <= n <= 2 * 10^4
  • nums.length == n
  • 1 <= nums[i] <= 50
  • edges.length == n - 1
  • edges[i].length == 2
  • 0 <= edges[i][0], edges[i][1] <= n - 1
  • edges 表示一棵合法的树。

解题思路

主要思路是枚举可以划分的联通块块数

所有权值的和sum最大为10^6,可以划分的联通块的权值即是sum的因子,数字x的因子个数可近似估计为x开立方。实际上10^6的因子个数为240。

那么枚举sum的因子target,然后再在O(n)时间内判断是否可以划分出权值总和为target的连通块即可

利用dfs在树上统计,详见代码

代码

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
class Solution {
public:
    int componentValue(vector<int>& nums, vector<vector<int>>& edges) {
        int n = nums.size();
        vector<int> G[n];
        for(auto &vec: edges){
            G[vec[0]].push_back(vec[1]);
            G[vec[1]].push_back(vec[0]);
        }
        int sum = accumulate(nums.begin(),nums.end(),0);

        function<int(int,int,int)> dfs = [&](int u, int fa, int target)->int{
            int s = nums[u];
            for(auto &v: G[u]){
                if(v == fa) continue;
                int ss = dfs(v,u,target);
                if(ss==-1) return -1;
                s += ss;
            }
            if(s == target) return 0;//连通块总和为target,赋值为0表示删去
            else if(s>target) return -1;//连通块总和大于target,肯定有一个连通块权值和大于target了,非法
            return s;

        };//以u为根节点的子树,是否可以分成价值总和为target的连通块,等于则0

        for(int i=n;i>=1;i--){//枚举分成i个联通块
            if(sum%i==0){
                if(dfs(0,-1, sum/i) == 0){
                    return i-1;
                }
            }
        }

        return 0;
    }
};
Licensed under CC BY-NC-SA 4.0
Built with Hugo
Theme Stack designed by Jimmy